Quantization of affine function spaces

Anindya Ghatak
Joint work with
Anil Kumar Karn

23.08.2019

Preliminaries

- Let K be a compact convex set in a locally convex space E.
- $a: K \rightarrow \mathbb{R}$ is affine map if

$$
a(\lambda u+(1-\lambda) v)=\lambda a(u)+(1-\lambda) a(v)
$$

for all $u, v \in K$ and $\lambda \in[0,1]$.

Preliminaries

- Let K be a compact convex set in a locally convex space E.
- $a: K \rightarrow \mathbb{R}$ is affine map if

$$
a(\lambda u+(1-\lambda) v)=\lambda a(u)+(1-\lambda) a(v)
$$

for all $u, v \in K$ and $\lambda \in[0,1]$.

- $A(K)$: the set of all continuous affine functions on K.

Prelimaries

- A C^{*}-algebra \mathcal{A} is a Banach $*$-algebra which satisfies C^{*}-condition

$$
\left\|x^{*} x\right\|=\|x\|^{2} \quad \forall x \in \mathcal{A} .
$$

- $\mathcal{A}_{\text {sa }}$: the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^{+}: the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^{+}$if $a=b^{*} b$ for some $b \in \mathcal{A}$).

Prelimaries

- A C^{*}-algebra \mathcal{A} is a Banach $*$-algebra which satisfies C^{*}-condition

$$
\left\|x^{*} x\right\|=\|x\|^{2} \quad \forall x \in \mathcal{A}
$$

- $\mathcal{A}_{\text {sa }}$: the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^{+}: the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^{+}$if $a=b^{*} b$ for some $b \in \mathcal{A}$).

Kadison's observation

Let $\mathcal{B} \subset \mathcal{A}$ be a unital self-adjoint subspace. Let $\mathcal{B}^{+}=\mathcal{B} \cap \mathcal{A}^{+}$.
Then $\left(\mathcal{B}_{\text {sa }}, \mathcal{B}^{+}, I\right)$ is an order unit space. That is

Prelimaries

- A C^{*}-algebra \mathcal{A} is a Banach $*$-algebra which satisfies C^{*}-condition

$$
\left\|x^{*} x\right\|=\|x\|^{2} \quad \forall x \in \mathcal{A} .
$$

- $\mathcal{A}_{\text {sa }}$: the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^{+}: the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^{+}$if $a=b^{*} b$ for some $b \in \mathcal{A}$).

Kadison's observation

Let $\mathcal{B} \subset \mathcal{A}$ be a unital self-adjoint subspace. Let $\mathcal{B}^{+}=\mathcal{B} \cap \mathcal{A}^{+}$. Then $\left(\mathcal{B}_{\text {sa }}, \mathcal{B}^{+}, I\right)$ is an order unit space. That is
(1) (order unit property) $b \in B \Longrightarrow-\lambda I \leq b \leq \lambda /$ for some $\lambda>0$.

Prelimaries

- A C^{*}-algebra \mathcal{A} is a Banach $*$-algebra which satisfies C^{*}-condition

$$
\left\|x^{*} x\right\|=\|x\|^{2} \quad \forall x \in \mathcal{A} .
$$

- $\mathcal{A}_{\text {sa }}$: the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^{+}: the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^{+}$if $a=b^{*} b$ for some $b \in \mathcal{A}$).

Kadison's observation

Let $\mathcal{B} \subset \mathcal{A}$ be a unital self-adjoint subspace. Let $\mathcal{B}^{+}=\mathcal{B} \cap \mathcal{A}^{+}$. Then $\left(\mathcal{B}_{\text {sa }}, \mathcal{B}^{+}, I\right)$ is an order unit space. That is
(1) (order unit property) $b \in B \Longrightarrow-\lambda I \leq b \leq \lambda /$ for some $\lambda>0$.
(2) (Archimedean property) if $b+\lambda I \geq 0$ for all $\lambda>0$ for some $b \in A \Longrightarrow b \geq 0$.

Affine function space and order unit space

- A linear function $f: \mathcal{B} \rightarrow \mathbb{C}$ is called state if

$$
f\left(\mathcal{B}^{+}\right) \subseteq[0, \infty) \quad \text { and } \quad f(1)=1
$$

Affine function space and order unit space

- A linear function $f: \mathcal{B} \rightarrow \mathbb{C}$ is called state if

$$
f\left(\mathcal{B}^{+}\right) \subseteq[0, \infty) \quad \text { and } \quad f(1)=1
$$

- $S(\mathcal{B})$: the set of all state of \mathcal{B}.
- $S(\mathcal{B})$ is a w^{*}-compact convex set.

Affine function space and order unit space

- A linear function $f: \mathcal{B} \rightarrow \mathbb{C}$ is called state if

$$
f\left(\mathcal{B}^{+}\right) \subseteq[0, \infty) \quad \text { and } \quad f(1)=1
$$

- $S(\mathcal{B})$: the set of all state of \mathcal{B}.
- $S(\mathcal{B})$ is a w^{*}-compact convex set.

Theorem (Kadison-1951)

$\mathcal{B}_{s a}$ is isometrically order isomorphic to $A(K)$, where $K=S(\mathcal{B})$.

Affine function space and order unit space

- A linear function $f: \mathcal{B} \rightarrow \mathbb{C}$ is called state if

$$
f\left(\mathcal{B}^{+}\right) \subseteq[0, \infty) \quad \text { and } \quad f(1)=1
$$

- $S(\mathcal{B})$: the set of all state of \mathcal{B}.
- $S(\mathcal{B})$ is a w^{*}-compact convex set.

Theorem (Kadison-1951)

$\mathcal{B}_{s a}$ is isometrically order isomorphic to $A(K)$, where $K=S(\mathcal{B})$.

Problem: Is it possible to construct a compact convex set K such that

$$
A(K) \cong \mathcal{B}_{s a}
$$

where \mathcal{B} is a unital self-adjoint subspace of a C^{*}-algebra.

Non-comutaive order, Effros-1976

- Non self-adjoint characterization : Let $a \in \mathcal{B}$. Then $\|a\| \leq 1$ if and only if

$$
\left[\begin{array}{ll}
1 & a \\
a^{*} & 1
\end{array}\right] \in M_{2}(\mathcal{B})^{+} .
$$

Non-comutaive order, Effros-1976

- Non self-adjoint characterization : Let $a \in \mathcal{B}$. Then $\|a\| \leq 1$ if and only if

$$
\left[\begin{array}{ll}
1 & a \\
a^{*} & 1
\end{array}\right] \in M_{2}(\mathcal{B})^{+} .
$$

- If $a \in \mathcal{B}$, then

$$
\|a\|=\inf \left\{\lambda \geq 0:\left[\begin{array}{cc}
\lambda I & a \\
a^{*} & \lambda I
\end{array}\right] \geq 0\right\}
$$

Non commutative ordered in abstract space

Definition (Choi, Effros-77)
Let V be a complex *-vector space. Then V is called matrix ordered space if there is a cone $M_{n}(V)^{+} \subset M_{n}(V)_{s a}$ for each n such that

$$
\gamma^{*} M_{m}(V)^{+} \gamma \subset M_{n}(V)^{+}
$$

if $\gamma \in \mathbb{M}_{m, n}$.

Non commutative ordered in abstract space

Definition (Choi, Effros-77)

Let V be a complex $*$-vector space. Then V is called matrix ordered space if there is a cone $M_{n}(V)^{+} \subset M_{n}(V)_{\text {sa }}$ for each n such that

$$
\gamma^{*} M_{m}(V)^{+} \gamma \subset M_{n}(V)^{+}
$$

if $\gamma \in \mathbb{M}_{m, n}$.

- $\phi: V \rightarrow W$ be a linear map (V, W vector spaces).
- (n-amplification) $\phi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ by

$$
\phi_{n}\left(\left[v_{i, j}\right]\right)=\left[\phi\left(v_{i, j}\right)\right] .
$$

Non commutative ordered in abstract space

Definition (Choi, Effros-77)

Let V be a complex *-vector space. Then V is called matrix ordered space if there is a cone $M_{n}(V)^{+} \subset M_{n}(V)_{s a}$ for each n such that

$$
\gamma^{*} M_{m}(V)^{+} \gamma \subset M_{n}(V)^{+}
$$

```
if }\gamma\in\mp@subsup{\mathbb{M}}{m,n}{}
```

- $\phi: V \rightarrow W$ be a linear map (V, W vector spaces).
- (n-amplification) $\phi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ by

$$
\phi_{n}\left(\left[v_{i, j}\right]\right)=\left[\phi\left(v_{i, j}\right)\right] .
$$

- Let V, W be matrix ordered spaces and $\phi: V \rightarrow W$ be a self-adjoint linear map. Then ϕ is completely positive if ϕ_{n} is positive for each n.

Operator systems

Theorem (Choi-Effros-1977)
Let $\left(V,\left\{M_{n}(V)^{+}\right\}\right)$be a matrix ordered space and let e be an order unit for V^{+}. Then following are equivalent
(1) V^{+}is proper and $M_{n}(V)^{+}$Archimedean for each n
(2) there exists cp-map $\varphi: V \rightarrow \mathcal{B}(H)$ for some Hilbert space H.

Operator systems

Theorem (Choi-Effros-1977)

Let $\left(V,\left\{M_{n}(V)^{+}\right\}\right)$be a matrix ordered space and let e be an order unit for V^{+}. Then following are equivalent
(1) V^{+}is proper and $M_{n}(V)^{+}$Archimedean for each n
(2) there exists cp-map $\varphi: V \rightarrow \mathcal{B}(H)$ for some Hilbert space H.

Let V be a complex vector space, and let $\|.\|_{n}$ be a norm on $M_{n}(V)$. Then V is called a matrcially normed space if
(1) $\|\alpha v \beta\|_{n} \leq\|\alpha\|\|v\|_{n}\|\beta\|$ for all $v \in M_{n}(V), \alpha, \beta \in \mathbb{M}_{n}$,
(2) $\|v \oplus 0\|_{n+m}=\|v\|_{n}$ for all $v \in M_{n}(V)$.

L^{∞}-matricial norm space

- Let $(V,\{\|\cdot\|\})$ be a matrcially normed space.

L^{∞}-matricial norm space

- Let $(V,\{\|\|\}$.$) be a matrcially normed space.$
- Then V is called L^{∞}-matricially normed space if

$$
\begin{aligned}
& \qquad\|v \oplus w\|_{n+m}=\max \left\{\|v\|_{n},\|w\|_{m}\right\} \\
& \text { for all } v \in M_{n}(V), w \in M_{m}(V) .
\end{aligned}
$$

L^{∞}-matricial norm space

- Let $(V,\{\|\|\}$.$) be a matrcially normed space.$
- Then V is called L^{∞}-matricially normed space if

$$
\|v \oplus w\|_{n+m}=\max \left\{\|v\|_{n},\|w\|_{m}\right\}
$$

for all $v \in M_{n}(V), w \in M_{m}(V)$.

- Let $\phi: V \rightarrow W$ be a linear map. Then ϕ is completely bounded if

$$
\|\phi\|_{C B}:=\sup \left\{\left\|\phi_{n}\right\|_{n}: n \in \mathbb{N}\right\}<\infty ;
$$

L^{∞}-matricial norm space

- Let $(V,\{\|\|\}$.$) be a matrcially normed space.$
- Then V is called L^{∞}-matricially normed space if

$$
\|v \oplus w\|_{n+m}=\max \left\{\|v\|_{n},\|w\|_{m}\right\}
$$

for all $v \in M_{n}(V), w \in M_{m}(V)$.

- Let $\phi: V \rightarrow W$ be a linear map. Then ϕ is completely bounded if

$$
\|\phi\|_{C B}:=\sup \left\{\left\|\phi_{n}\right\|_{n}: n \in \mathbb{N}\right\}<\infty ;
$$

- ϕ is called completely isometry if ϕ_{n} is isometry for each $n \in \mathbb{N}$.

L^{∞}-matricial norm space

- Let $(V,\{\|\|\}$.$) be a matrcially normed space.$
- Then V is called L^{∞}-matricially normed space if

$$
\|v \oplus w\|_{n+m}=\max \left\{\|v\|_{n},\|w\|_{m}\right\}
$$

for all $v \in M_{n}(V), w \in M_{m}(V)$.

- Let $\phi: V \rightarrow W$ be a linear map. Then ϕ is completely bounded if

$$
\|\phi\|_{C B}:=\sup \left\{\left\|\phi_{n}\right\|_{n}: n \in \mathbb{N}\right\}<\infty ;
$$

- ϕ is called completely isometry if ϕ_{n} is isometry for each $n \in \mathbb{N}$.

Theorem (Ruan-1988)

Let $\left(V,\left\{\|\cdot\|_{n}\right\}\right)$ be a matricially normed space. Then V is an L^{∞}-matrcially normed space \Longleftrightarrow there is a complete isometry $\phi: V \rightarrow \mathcal{B}(H)$ for some Hilbert space H.

C*-ordered operator space

Definition

Let $\left(V,\left\{M_{n}(V)^{+}\right\}\right)$be a matrix ordered space together with an L^{∞}-matricial norm $\left\{\|\cdot\|_{n}\right\}$ is said to be a C^{*}-ordered operator space if V^{+}is proper and for each $n \in \mathbb{N}$, satisfies the following:
(1) $*$ is isometry on $M_{n}(V)$;
(2) $M_{n}(V)^{+}$is closed;
(3) $\|f\|_{n} \leq \max \left\{\|g\|_{n},\|h\|_{n}\right\}$, whenever $f \leq g \leq h$ with $f, g, h \in M_{n}(V)_{s a}$.

C*-ordered operator space

Definition

Let $\left(V,\left\{M_{n}(V)^{+}\right\}\right)$be a matrix ordered space together with an L^{∞}-matricial norm $\left\{\|\cdot\|_{n}\right\}$ is said to be a C^{*}-ordered operator space if V^{+}is proper and for each $n \in \mathbb{N}$, satisfies the following:
(1) $*$ is isometry on $M_{n}(V)$;
(2) $M_{n}(V)^{+}$is closed;
(3) $\|f\|_{n} \leq \max \left\{\|g\|_{n},\|h\|_{n}\right\}$, whenever $f \leq g \leq h$ with $f, g, h \in M_{n}(V)_{s a}$.

Theorem (Karn, 2011)

Let $\left(V,\left\{M_{n}(V)^{+}\right\}\right)$be a matrix ordered space with an L^{∞}-matricial norm $\left\{\|\cdot\|_{n}\right\}$.
Then V is a C^{*}-ordered operator space \Longleftrightarrow there exists a completely order isomerty $\varphi: V \rightarrow \mathcal{A}$ for some C^{*}-algebra \mathcal{A}.

Geometry of convex set

- V : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \operatorname{ext}(K)$.

Geometry of convex set

- V : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \operatorname{ext}(K)$.

Definition (G.-Karn)

An element $k \in K$ is called a lead point of $K(k \in \operatorname{lead}(K))$ if $k=\alpha k_{1}$ for some $k_{1} \in K$ with $\alpha \in[0,1]$, then $\alpha=1$.

Geometry of convex set

- V : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \operatorname{ext}(K)$.

Definition (G.-Karn)

An element $k \in K$ is called a lead point of $K(k \in \operatorname{lead}(K))$ if $k=\alpha k_{1}$ for some $k_{1} \in K$ with $\alpha \in[0,1]$, then $\alpha=1$.

- (Observation:) $\operatorname{ext}(K) \backslash\{0\} \subset \operatorname{lead}(K)$.

Geometry of convex set

- V : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \operatorname{ext}(K)$.

Definition (G.-Karn)

An element $k \in K$ is called a lead point of $K(k \in \operatorname{lead}(K))$ if $k=\alpha k_{1}$ for some $k_{1} \in K$ with $\alpha \in[0,1]$, then $\alpha=1$.

- (Observation:) $\operatorname{ext}(K) \backslash\{0\} \subset$ lead (K).

Theorem (G.-Karn)

For each $k \in K \backslash\{0\}$. There is a unique $\alpha \in(0,1]$ and $\widehat{k} \in \operatorname{lead}(K)$ such that $k=\alpha \widehat{k}$.

Quantization

- In operator space, quantization is a method to construct an operator space from a given Banach space.

Quantization

- In operator space, quantization is a method to construct an operator space from a given Banach space.
- (Recall) $K_{n} \in M_{n}(V)_{s a}$ and $0 \in \operatorname{ext}\left\{K_{n}\right\}$.
- Reformulation of the problem: Is it possible to find a sequence $\left\{K_{n}\right\}$ of compact convex set so that the affine spaces over K_{n} is turn out to a C^{*}-ordered operator space?

L^{1}-matrix convex set

L^{1}-matrix convex set (G.-Karn)
Let V be a $*$-locally convex space. Let $\left\{K_{n}\right\}$ be a collection of compact convex sets with $K_{n} \subset M_{n}(V)_{s a}$ and $0 \in \partial_{e}\left(K_{n}\right)$ for all n. Then $\left\{K_{n}\right\}$ is called an L^{1}-matrix convex set if the following conditions hold:
\mathbf{L}_{1} If $u \in K_{n}$ and $\gamma_{i} \in \mathbb{M}_{n, n_{i}}$ such that $\sum_{i=1}^{k} \gamma_{i} \gamma_{i}^{*} \leq I_{n}$, then

$$
\oplus_{i=1}^{k} \gamma_{i}^{*} u \gamma_{i} \in K_{\sum_{i=1}^{k} n_{i}} .
$$

L^{1}-matrix convex set

L^{1}-matrix convex set (G.-Karn)

Let V be a $*$-locally convex space. Let $\left\{K_{n}\right\}$ be a collection of compact convex sets with $K_{n} \subset M_{n}(V)_{s a}$ and $0 \in \partial_{e}\left(K_{n}\right)$ for all n. Then $\left\{K_{n}\right\}$ is called an L^{1}-matrix convex set if the following conditions hold:
\mathbf{L}_{1} If $u \in K_{n}$ and $\gamma_{i} \in \mathbb{M}_{n, n_{i}}$ such that $\sum_{i=1}^{k} \gamma_{i} \gamma_{i}^{*} \leq I_{n}$, then

$$
\oplus_{i=1}^{k} \gamma_{i}^{*} u \gamma_{i} \in K_{\sum_{i=1}^{k} n_{i}} .
$$

\mathbf{L}_{2} If $u \in K_{2 n}$ so that $u=\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{12}^{*} & u_{22}\end{array}\right]$ for some $u_{11}, u_{22} \in K_{n}$ and $u_{12} \in M_{n}(V)$, then $u_{12}+u_{12}^{*} \in \operatorname{co}\left(K_{n} \cup-K_{n}\right)$.

L^{1}-matrix convex set

L^{1}-matrix convex set (G.-Karn)

Let V be a $*$-locally convex space. Let $\left\{K_{n}\right\}$ be a collection of compact convex sets with $K_{n} \subset M_{n}(V)_{s a}$ and $0 \in \partial_{e}\left(K_{n}\right)$ for all n. Then $\left\{K_{n}\right\}$ is called an L^{1}-matrix convex set if the following conditions hold:
\mathbf{L}_{1} If $u \in K_{n}$ and $\gamma_{i} \in \mathbb{M}_{n, n_{i}}$ such that $\sum_{i=1}^{k} \gamma_{i} \gamma_{i}^{*} \leq I_{n}$, then

$$
\oplus_{i=1}^{k} \gamma_{i}^{*} u \gamma_{i} \in K_{\sum_{i=1}^{k} n_{i}} .
$$

\mathbf{L}_{2} If $u \in K_{2 n}$ so that $u=\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{12}^{*} & u_{22}\end{array}\right]$ for some $u_{11}, u_{22} \in K_{n}$ and $u_{12} \in M_{n}(V)$, then $u_{12}+u_{12}^{*} \in \operatorname{co}\left(K_{n} \cup-K_{n}\right)$.
\mathbf{L}_{3} Let $u \in K_{m+n}$ with $u=\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{12}^{*} & u_{22}\end{array}\right]$ so that $u_{11} \in K_{m}, u_{22} \in K_{n}$ and $u_{12} \in M_{m, n}(V)$ and if $u_{11}=\alpha_{1} \widehat{u_{11}}, u_{22}=\alpha_{22} \widehat{u_{22}}$ with $\widehat{u_{11}} \in \operatorname{lead}\left(K_{m}\right), \widehat{u_{22}} \in \operatorname{lead}\left(K_{n}\right)$, then $\alpha_{1}+\alpha_{2} \leq 1$.

L^{1}-matrix convex set

L^{1}-matrix convex set (G.-Karn)

Let V be a $*$-locally convex space. Let $\left\{K_{n}\right\}$ be a collection of compact convex sets with $K_{n} \subset M_{n}(V)_{s a}$ and $0 \in \partial_{e}\left(K_{n}\right)$ for all n. Then $\left\{K_{n}\right\}$ is called an L^{1}-matrix convex set if the following conditions hold:
\mathbf{L}_{1} If $u \in K_{n}$ and $\gamma_{i} \in \mathbb{M}_{n, n_{i}}$ such that $\sum_{i=1}^{k} \gamma_{i} \gamma_{i}^{*} \leq I_{n}$, then

$$
\oplus_{i=1}^{k} \gamma_{i}^{*} u \gamma_{i} \in K_{\sum_{i=1}^{k} n_{i}} .
$$

\mathbf{L}_{2} If $u \in K_{2 n}$ so that $u=\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{12}^{*} & u_{22}\end{array}\right]$ for some $u_{11}, u_{22} \in K_{n}$ and $u_{12} \in M_{n}(V)$, then $u_{12}+u_{12}^{*} \in \operatorname{co}\left(K_{n} \cup-K_{n}\right)$.
L_{3} Let $u \in K_{m+n}$ with $u=\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{12}^{*} & u_{22}\end{array}\right]$ so that $u_{11} \in K_{m}, u_{22} \in K_{n}$ and $u_{12} \in M_{m, n}(V)$ and if $u_{11}=\alpha_{1} \widehat{u_{11}}, u_{22}=\alpha_{22} \widehat{u_{22}}$ with $\widehat{u_{11}} \in \operatorname{lead}\left(K_{m}\right), \widehat{u_{22}} \in \operatorname{lead}\left(K_{n}\right)$, then $\alpha_{1}+\alpha_{2} \leq 1$.

- Example: Let V be a C^{*}-ordered operator space. Then $\left\{Q_{n}(V)\right\}$ is an L^{1}-matrix convex set with lead $\left(Q_{n}(V)\right)=S_{n}(V)$.

$\left\{A_{0}\left(K_{n}\right)\right\}$-Spaces

- Let V be a $*$-locally convex space,
- let $\left\{K_{n}\right\}$ be an L^{1}-matrix convex set of V,
- $M_{n}(V)^{+}:=\cup_{r=1}^{\infty} r K_{n}$ is a cone in $M_{n}(V)_{\text {sa }}$ for all n
- with V^{+}is proper and generating.

Define

$A_{0}\left(K_{n}, M_{n}(V)\right):=\left\{a: K_{n} \rightarrow \mathbb{C} \mid a\right.$ is continuous and affine; $a(0)=0$; and a extends to a continuous linear functional

$$
\left.\tilde{a}: M_{n}(V) \rightarrow \mathbb{C}\right\} .
$$

Main Theorem

Theorem (G.-Karn)
Let V be a C^{*}-ordered operator space.
$\Longrightarrow\left\{Q_{n}(V)\right\}$ is an L^{1}-matrix convex.

Main Theorem

Theorem (G.-Karn)
Let V be a C^{*}-ordered operator space.
$\Longrightarrow\left\{Q_{n}(V)\right\}$ is an L^{1}-matrix convex.

Theorem (G.-Karn)

Let $\left\{K_{n}\right\}$ be an L^{1}-matrix convex set of V.
$\Longrightarrow\left(A_{0}\left(K_{1}, V\right),\left\{M_{n}\left(A_{0}\left(K_{1}, V\right)^{+}\right\},\left\{\|\cdot\|_{n}\right\}\right)\right.$ is a C^{*}-ordered operator space.

Sketch of the proof:

Step-1 Given $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$, we define

$$
a^{*}(u):=\overline{a(u)} \text { for all } u \in K_{n} .
$$

Sketch of the proof:

Step-1 Given $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$, we define

$$
a^{*}(u):=\overline{a(u)} \text { for all } u \in K_{n} .
$$

Step-2 $A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}=\left\{a \in A_{0}\left(K_{n}, M_{n}(V)\right): a^{*}=a\right\}$.

Continued..

Step-3 If $\alpha \in \mathbb{M}_{m, n}, \beta \in \mathbb{M}_{n, m}$ and $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$. We define

$$
\alpha a \beta(v):=\tilde{a}\left(\alpha^{T} v \beta^{T}\right) \text { for all } v \in K_{m} .
$$

- Then $\alpha a \beta \in A_{0}\left(K_{m}, M_{m}(V)\right)$

Continued..

Step-3 If $\alpha \in \mathbb{M}_{m, n}, \beta \in \mathbb{M}_{n, m}$ and $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$. We define

$$
\alpha a \beta(v):=\tilde{a}\left(\alpha^{T} v \beta^{T}\right) \text { for all } v \in K_{m} .
$$

- Then $\alpha a \beta \in A_{0}\left(K_{m}, M_{m}(V)\right)$

Step-4 If $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$ and $b \in A_{0}\left(K_{m}, M_{m}(V)\right)$. We define

$$
(a \oplus b)(v):=a\left(v_{11}\right)+b\left(v_{22}\right) \text { for all } v \in K_{n+m},
$$

where $v=\left[\begin{array}{ll}v_{11} & v_{12} \\ v_{12}^{*} & v_{22}\end{array}\right]$ for some $v_{11} \in K_{n}, v_{22} \in K_{m}, v_{12} \in$ $M_{n, m}(V)$.

- Then $a \oplus b \in A_{0}\left(K_{n+m}, M_{n+m}(V)\right)$.

Continued..

Step-5
 $A_{0}\left(K_{n}, M_{n}(V)\right)^{+}:=\left\{a \in A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}: a(u) \geq 0 \quad \forall u \in K_{n}\right\}$.

Continued..

Step-5

$A_{0}\left(K_{n}, M_{n}(V)\right)^{+}:=\left\{a \in A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}: a(u) \geq 0 \quad \forall u \in K_{n}\right\}$.

- If $a \in A_{0}\left(K_{m}, M_{m}(V)\right)^{+}, b \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$and $\alpha \in \mathbb{M}_{m, n}$, we have
(1) $\alpha^{*} a \alpha \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$,

Continued..

Step-5

$A_{0}\left(K_{n}, M_{n}(V)\right)^{+}:=\left\{a \in A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}: a(u) \geq 0 \quad \forall u \in K_{n}\right\}$.

- If $a \in A_{0}\left(K_{m}, M_{m}(V)\right)^{+}, b \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$and $\alpha \in \mathbb{M}_{m, n}$, we have
(1) $\alpha^{*} a \alpha \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$,
(2) $a \oplus b \in A_{0}\left(K_{m+n}, M_{m+n}(V)\right)^{+}$.

Continued..

Step-5

$$
A_{0}\left(K_{n}, M_{n}(V)\right)^{+}:=\left\{a \in A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}: a(u) \geq 0 \quad \forall u \in K_{n}\right\} .
$$

- If $a \in A_{0}\left(K_{m}, M_{m}(V)\right)^{+}, b \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$and $\alpha \in \mathbb{M}_{m, n}$, we have
(1) $\alpha^{*} a \alpha \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$,
(2) $a \oplus b \in A_{0}\left(K_{m+n}, M_{m+n}(V)\right)^{+}$.

Step-6 $A_{0}\left(K_{n}, M_{n}(V)\right)$ is a normed linear space equipped with norm

$$
\|a\|_{\infty, n}=\sup \left\{\left|\left[\begin{array}{cc}
0 & a \\
a^{*} & 0
\end{array}\right](u)\right|: u \in K_{2 n}\right\} \text { for all } a \in A_{0}\left(K_{n}, M_{n}(V)\right)
$$

Continued..

Step-5

$A_{0}\left(K_{n}, M_{n}(V)\right)^{+}:=\left\{a \in A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}: a(u) \geq 0 \quad \forall u \in K_{n}\right\}$.

- If $a \in A_{0}\left(K_{m}, M_{m}(V)\right)^{+}, b \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$and $\alpha \in \mathbb{M}_{m, n}$, we have
(1) $\alpha^{*} a \alpha \in A_{0}\left(K_{n}, M_{n}(V)\right)^{+}$,
(2) $a \oplus b \in A_{0}\left(K_{m+n}, M_{m+n}(V)\right)^{+}$.

Step-6 $A_{0}\left(K_{n}, M_{n}(V)\right)$ is a normed linear space equipped with norm

$$
\|a\|_{\infty, n}=\sup \left\{\left|\left[\begin{array}{cc}
0 & a \\
a^{*} & 0
\end{array}\right](u)\right|: u \in K_{2 n}\right\} \text { for all } a \in A_{0}\left(K_{n}, M_{n}(V)\right)
$$

Step-7

If $a \in A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}$, then we have

$$
\|a\|_{\infty, n}=\sup \left\{|a(v)|: v \in K_{n}\right\}
$$

Continued..

Step-8 If $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$.

$$
\left\|a^{*}\right\|_{\infty, n}=\|a\|_{\infty, n} .
$$

Continued..

Step-8 If $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$.

$$
\left\|a^{*}\right\|_{\infty, n}=\|a\|_{\infty, n} .
$$

Step-9 $\left\{\|\cdot\|_{\infty, n}\right\}$ satisfies the following conditions:
(1) If $a \in A_{0}\left(K_{m}, M_{m}(V)\right), b \in A_{0}\left(K_{n}, M_{n}(V)\right)$; then

$$
\|a \oplus b\|_{\infty, m+n}=\max \left\{\|a\|_{\infty, m},\|b\|_{\infty, n}\right\} .
$$

Continued..

Step-8 If $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$.

$$
\left\|a^{*}\right\|_{\infty, n}=\|a\|_{\infty, n} .
$$

Step-9 $\left\{\|\cdot\|_{\infty, n}\right\}$ satisfies the following conditions:
(1) If $a \in A_{0}\left(K_{m}, M_{m}(V)\right), b \in A_{0}\left(K_{n}, M_{n}(V)\right)$; then

$$
\|a \oplus b\|_{\infty, m+n}=\max \left\{\|a\|_{\infty, m},\|b\|_{\infty, n}\right\} .
$$

(2) if $a \in A_{0}\left(K_{m}, M_{n}(V)\right), \alpha \in \mathbb{M}_{m, n}$ and $\beta \in \mathbb{M}_{n, m}$;

$$
\|\alpha a \beta\|_{\infty, m} \leq\|\alpha\|\|a\|_{\infty, n}\|\beta\|
$$

Continued..

Step-8 If $a \in A_{0}\left(K_{n}, M_{n}(V)\right)$.

$$
\left\|a^{*}\right\|_{\infty, n}=\|a\|_{\infty, n} .
$$

Step-9 $\left\{\|\cdot\|_{\infty, n}\right\}$ satisfies the following conditions:
(1) If $a \in A_{0}\left(K_{m}, M_{m}(V)\right), b \in A_{0}\left(K_{n}, M_{n}(V)\right)$; then

$$
\|a \oplus b\|_{\infty, m+n}=\max \left\{\|a\|_{\infty, m},\|b\|_{\infty, n}\right\} .
$$

(2) if $a \in A_{0}\left(K_{m}, M_{n}(V)\right), \alpha \in \mathbb{M}_{m, n}$ and $\beta \in \mathbb{M}_{n, m}$;

$$
\|\alpha a \beta\|_{\infty, m} \leq\|\alpha\|\|a\|_{\infty, n}\|\beta\|
$$

(3) If $a \leq b \leq c$ in $A_{0}\left(K_{n}, M_{n}(V)\right)_{s a}$, we have

$$
\|b\|_{\infty, n} \leq \max \left\{\|a\|_{\infty, n},\|c\| \infty, n\right\} .
$$

Continued...

Step-10 Let us define a map
$\Phi_{n}: A_{0}\left(K_{n}, M_{n}(V)\right) \mapsto M_{n}\left(A_{0}\left(K_{1}, V\right)\right)$ given by

$$
\begin{equation*}
\phi_{n}(a)=\left[a_{i, j}\right] \tag{1}
\end{equation*}
$$

where $a_{i, j}(v)=\tilde{a}\left(\varepsilon_{i, j} \otimes v\right)$ for all $v \in K_{1}$.

Continued...

Step-10 Let us define a map
$\Phi_{n}: A_{0}\left(K_{n}, M_{n}(V)\right) \mapsto M_{n}\left(A_{0}\left(K_{1}, V\right)\right)$ given by

$$
\begin{equation*}
\phi_{n}(a)=\left[a_{i, j}\right] \tag{1}
\end{equation*}
$$

where $a_{i, j}(v)=\tilde{a}\left(\varepsilon_{i, j} \otimes v\right)$ for all $v \in K_{1}$.

Step-11

$\Phi_{n}: A_{0}\left(K_{n}, M_{n}(V)\right) \mapsto M_{n}\left(A_{0}\left(K_{1}, V\right)\right)$ is a $*$-isomorphism.

Continued...

Step-10 Let us define a map
$\Phi_{n}: A_{0}\left(K_{n}, M_{n}(V)\right) \mapsto M_{n}\left(A_{0}\left(K_{1}, V\right)\right)$ given by

$$
\begin{equation*}
\phi_{n}(a)=\left[a_{i, j}\right], \tag{1}
\end{equation*}
$$

where $a_{i, j}(v)=\tilde{a}\left(\varepsilon_{i, j} \otimes v\right)$ for all $v \in K_{1}$.

Step-11

$\Phi_{n}: A_{0}\left(K_{n}, M_{n}(V)\right) \mapsto M_{n}\left(A_{0}\left(K_{1}, V\right)\right)$ is a $*$-isomorphism.
Step -12 We transport the order and the norm structures to $M_{n}\left(A_{0}\left(K_{1}, V\right)\right)$ via isomorphism from $A_{0}\left(K_{n}, M_{n}(V)\right)$ as follows:

$$
\left[a_{i, j}\right] \in M_{n}\left(A_{0}\left(K_{1}, V\right)\right)^{+}
$$

if and only if

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i, j}\left(v_{i, j}\right) \geq 0 \tag{2}
\end{equation*}
$$

for all $\left[v_{i, j}\right] \in K_{n}$ and

$$
\begin{equation*}
\left\|\left[a_{i, j}\right]\right\|_{n}=\left\|\Phi_{n}^{-1}\left(\left[a_{i, j}\right]\right)\right\|_{\infty, n} \text { for all }\left[a_{i, j}\right] \in M_{n}\left(A_{0}\left(K_{1}, V\right)\right) \tag{3}
\end{equation*}
$$

Step-13 Now $\left(A_{0}\left(K_{1}, V\right),\left\{M_{n}\left(A_{0}\left(K_{1}, V\right)\right)^{+}\right\},\left\{\|\cdot\|_{n}\right\}\right)$ is a matrix ordered and L^{∞}-matricially normed space such that
(1) * is an isometry,
(2) If $\left[a_{i, j}\right],\left[b_{i, j}\right],\left[c_{i, j}\right] \in M_{n}\left(A_{0}\left(K_{1}, V\right)\right)_{s a}$ with

$$
\left[a_{i, j}\right] \leq\left[b_{i, j}\right] \leq\left[c_{i, j}\right],
$$

we have

$$
\left\|\left[b_{i, j}\right]\right\|_{n} \leq \max \left\{\left\|\left[a_{i, j}\right]\right\|_{n},\left\|\left[c_{i, j}\right]\right\|_{n}\right\} .
$$

Hence, $\left\{A_{0}\left(K_{n}, M_{n}(V)\right)\right\}$ is complete isometrically, completely order isomorphic to a C^{*}-ordered operator space.

L^{1}-regularly embedded (G.- Karn)

Let $\left\{K_{n}\right\}$ be an L^{1}-matrix convex set in a $*$-locally convex space V. Then $\left\{K_{n}\right\}$ is called L^{1}-regularly embedded in V if $\mathbf{L}_{1}\left(=\operatorname{lead}\left(K_{1}\right)\right)$ is regularly embedded in $V_{s a}$. In other words,
(1) L_{1} is compact and convex; and
(2) $\chi: V_{s a} \rightarrow\left(A\left(L_{1}\right)_{s a}^{*}\right)_{w *}$ is a linear homeomorphism.

Here $\chi(w)(a)=\lambda a(u)-\mu a(v)$ for all $a \in A\left(L_{1}\right)_{s a}$ if $w=\lambda u-\mu v$ for some $u, v \in L_{1}$ and $\lambda, \mu \in \mathbb{R}^{+}$.

L^{1}-regularly embedded (G.- Karn)

Let $\left\{K_{n}\right\}$ be an L^{1}-matrix convex set in a *-locally convex space V. Then $\left\{K_{n}\right\}$ is called L^{1}-regularly embedded in V if $\mathbf{L}_{1}\left(=\operatorname{lead}\left(K_{1}\right)\right)$ is regularly embedded in $V_{s a}$. In other words,
(1) L_{1} is compact and convex; and
(2) $\chi: V_{s a} \rightarrow\left(A\left(L_{1}\right)_{s a}^{*}\right)_{w *}$ is a linear homeomorphism.

Here $\chi(w)(a)=\lambda a(u)-\mu a(v)$ for all $a \in A\left(L_{1}\right)_{s a}$ if $w=\lambda u-\mu v$ for some $u, v \in L_{1}$ and $\lambda, \mu \in \mathbb{R}^{+}$.

L^{1}-matricial cap (G.- Karn)

Let $\left\{K_{n}\right\}$ be an L^{1}-matrix convex set. Then $\left\{L_{n}\right\}$ is called L^{1}-matricial cap for V if
(1) L_{1} is convex and
(2) if $v \in L_{m+n}$ with $v=\left[\begin{array}{ll}v_{11} & v_{12} \\ v_{12}^{*} & v_{22}\end{array}\right]$ for some $v_{11} \in K_{m}, v_{22} \in K_{n}$ and $v_{12} \in M_{m, n}(V)$ so that $v_{11}=\alpha_{1} \widehat{v_{1}}, v_{22}=\alpha_{22} \widehat{v_{2}}$ for some $\widehat{v_{1}} \in L_{m}, \widehat{v_{2}} \in L_{n}$ and $\alpha_{1}, \alpha_{2} \in[0,1]$, then $\alpha_{1}+\alpha_{2}=1$.

Characterization of operator system

Theorem (G.- Karn)

Let $\left\{K_{n}\right\}$ be an L^{1}-regularly embedded in V such that $\left\{L_{n}\right\}$ is an L^{1}-matricial cap for V. Then
(1) $A_{0}\left(K_{n}, M_{n}(V)\right)$ is an order unit space for all $n \in \mathbb{N}$.
(2) $\left\{A_{0}\left(K_{1}, V\right),\left\{M_{n}\left(A_{0}\left(K_{1}, V\right)\right\}, e\right)\right\}$ is an abstract operator system.
A. Ghatak, A. Karn, Qunatization of $A_{0}(K)$-spaces, Communicated.

References

(1) M. D. Choi, E. G. Effros, Injectivity and Operator Spaces, J. Funct. Anal., 24 (1977), 156-209.
(2) E. G. Effors, Z. J. Ruan, On the Abstract Characterization of Operator Spaces, Proc. Amer. Math. Soc., 119, (1993), 579-584.
(3) A. Ghatak, A. Karn, Quantization of $A_{0}(K)$-spaces, Preprint.
(9) A. K. Karn, Order Embedding of Matrix Ordered Spaces, Bull. Aust. Math. Soc., 84, (2011) 10-18.
(5) C. Webster, S. Winkler, Krein Milman Theorem for Operator Convexity, Trans. Amer. Math. Soc., 351, (1999), 307-322.
(0)W. Werner, Subspaces of $L(H)$ that are *-invarient, J. Funct. Anal., 193, (2002), 207-223.

THANK YOU!

